Trustworthy AI Autonomy Lecture 6: Generative models - Adversarial

Assistant Professor Carnegie Mellon University

Ding Zhao

2022 @ Ding Zhao

Agenda

- Traditional ways to identify scenarios
- **Data-based Scenario Generation**
- Adversarial Scenario Generation
 - Adversarial Generative Network
 - Importance Sampling methods
- Knowledge-based Scenario Generation

Adversarial Generative models? Check This ..

https://thispersondoesnotexist.com

Generative models

- Consists of two neural networks:
 - samples (e.g. Gaussian noise)
 - discriminator: classifying whether images are real (from datasets) or fake (generated by the generator)

Ding Zhao | CMU

Adversarial examples

 Adversarial examples: inputs that are specially made by adding small perturbation to original inputs to fool classifiers

t OpenAI, we think adversarial examples are a good aspect of security to work on because they represent a ncrete problem in AI safety that can be addressed in th hort term, and because fixing them is difficult enough hat it requires a serious research effort. (Though we'll need to explore many aspects of machine learning securit to achieve our goal of building safe, widely

 $\hat{v} =$ "panda" 57.7% confidence

small perturbation

= "gibbon 99.3% confidence

generator: generating fake high-quality images from random latent

- Training procedure
 - The parameters of both networks are updated by backpropagating the gradient of a mutual loss function
 - Key step: ensuring both networks are well-balanced (none dominating the other during training)

- Training mechanism is a minimax game:
 - Generator (G): generating good images using latent samples $z \sim p_z$ • Discriminator (D): discriminating real images $x \sim p_x$ from fake G(z)

- Training mechanism is a minimax game:
 - Discriminator (D): discriminating real images $x \sim p_x$ from fake G(z)

Dataset of real images

Training objective: max $\mathbb{E}_{x \sim p_x}[\log D(x)]$

Ding Zhao | CMU

Discriminator network D

- Training mechanism is a minimax game:
 - Generator (G): generating good images using latent samples $z \sim p_z$

Training objective: $\max_{C} \mathbb{E}_{z \sim p_{z}} \left[1(G(z) = real) \right] \approx \min_{C} \mathbb{E}_{z \sim p_{z}} \left[\log(1 - D(G(z))) \right]$ G

- Training mechanism is a minimax game:
 - Generator (G): generating good images using latent samples $z \sim p_z$
 - Discriminator (D): discriminating real images $x \sim p_x$ from fake G(z)
- Training goal: finding the best G and D simultaneously:

 $\min_{G} \max_{D} \left[\mathbb{E}_{x \sim p_x} [\log D(x)] + \mathbb{E}_{z \sim p_z} \right]$

$$\left[\log(1 - D(G(z)))\right]$$

- Improving the convergence of the minimax optimization
 - formulation)

GAN Type	Key Take-Away
GAN	The original (JSD divergence)
WGAN	EM distance objective
Improved WGAN	No weight clipping on WGAN
LSGAN	L2 loss objective
RWGAN	Relaxed WGAN framework
McGAN	Mean/covariance minimization objective
GMMN	Maximum mean discrepancy objective
MMD GAN	Adversarial kernel to GMMN
Cramer GAN	Cramer distance
Fisher GAN	Chi-square objective
EBGAN	Autoencoder instead of discriminator
BEGAN	WGAN and EBGAN merged objectives
MAGAN	Dynamic margin on hinge loss from EBGAN

Ding Zhao | CMU

• Choosing an appropriate mutual loss function (similar idea, but different

Source: https://towardsdatascience.com/ gan-objective-functions-gans-and-theirvariations-ad77340bce3c

Deep generative models

Approximate likelihood

VAE: maximize ELBO.

Exact likelihood

Flow-based generative models: minimize the negative log-likelihood

Likelihood free

GAN: minimax the classification error loss.

Ding Zhao | CMU

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Hands-on time: GAN Lab

Ding Zhao | CMU

https://poloclub.github.io/ganlab/

LAYERED DISTRIBUTIONS

Each dot is a sample:

Real samples

В

· Fake samples (by generator)

Background colors of grid cells represent discriminator's predict

- Samples in this cell might be real.
- Difficult to determine whether samples are real or fake.
- Samples in this cell might be from the generator.

• Put an autonomous vehicle into the loop to give feedback to the generator.

<u>W. Ding</u>, M. Xu, D. Zhao. Learning to collide: An adaptive safety-critical scenarios generating method, IROS 2020

Distribution of learned safety-critical scenarios (initial position and orientation)

Adaptive to different routes of AV

What's the remaining problem ?

Different results with different initialization

<u>W. Ding</u>, M. Xu, D. Zhao. Learning to collide: An adaptive safety-critical scenarios generating method, IROS 2020

- Safety-critical scenarios are diverse and follow a multi-modal distribution.
- Generated Safety-critical scenarios should be realistic.

- \bullet
- Use a normalizing flow model to estimate the multi-modal distribution. \bullet

<u>W. Ding</u>, B. Chen, B. Li, D. Zhao, Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation, Robotics and Automation Letters 2021

Use a prior model to represent the probability of a scenario happen in the real-world.

W. Ding, B. Chen, B. Li, D. Zhao, Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation, Robotics and Automation Letters 2021

- Considering the real-world data
- Diversity, multi-modal distribution

- Traffic rule violation

Summary

Adaptivity, interact with downstream vehicle

 Poor generalization, only works for target autonomous vehicle • Sparse and inefficient, robust vehicle is hard to attack

11 bilion miles

Rare event analysis

Ding Zhao | CMU

Nidhi Kalra, Susan M. Paddock, "How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? RAND report 2016

To prove an AV is safer than human drivers

Accelerated Evaluation

"Development of provable autonomous vehicle evaluation approaches with efficient data collection, unsupervised analysis, and highdimensional stochastic models of on-road driving environment" (Uber, PI)

"Development of efficient multi-model annotation and checking tools based on synthesized learning methods" (Bosch, PI)

"Development of a "primary other test vehicle" for the testing and evaluation of high-level automated vehicles" (Toyota, Co-PI)

From the Lab to the Street: Solving the Challenge of Accelerating Automated Vehicle Testing

DING ZHAO, PhD Assistant Research Scientist Mechanical Engineering University of Michigan

AUTOMATED VEHICLES | SIMULATION AND TESTING

HUEI PENG, PhD

Director, Mcity Roger L. McCarthy Professor of Mechanical Engineering University of Michigan

IMARY Interview of the second more advanced and technically

Key idea

- Give more test budgets to scenarios that may most likely fail AVs and also most likely happen in the real world
 - Likelihood of scenario in the real world <- models of real world data
 - Likelihood of failure <- AV-in-the-loop tests (physical/simulation)

Naturalistic environment vs accelerated environment

Naturalistic Environment

Ding Zhao | CMU

Zhao, "Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques", IEEE ITS, 2017.

Accelerated Environment

Accelerated Evaluation

Zhao, "Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques", IEEE ITS, 2017.

Ding Zhao | CMU

CONCEPT

1ETHODOLOGIES

Probabilistic Adversarial Sampling

- Suppose we want to estimate the probability of dangerous events ${\mathcal S}$
- Input: X = random initial distance and relative velocity
- Output: Y = simulation outcome, either crash or not crash

$$Y = f(X) = \begin{cases} 1, & \text{crash} \\ 0, & \text{not crash} \end{cases}$$

- Crash or dangerous set: $\mathcal{S} = \{X : f(X) = 1\}$
- Goal: Estimating $\mu = P(Y = 1) = P(X \in \mathcal{S}) = \mathbb{E}_{X \sim p}[1(X \in \mathcal{S})]$

Monte Carlo (MC) sampling • Monte Carlo procedure for estimating $\mu = \mathbb{E}_{X \sim p}[1(X \in \mathcal{S})]$: • generate n i.i.d samples $X^{(1)}, X^{(2)}, \dots, X^{(n)}$, where $X^{(i)} \sim p$ • observe $Y^{(1)}, Y^{(2)}, \dots, Y^{(n)}$, where $Y^{(i)} = f(X^{(i)})$

- - compute sample average (MC estimator) $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n Y^{(i)}$
- Note that
 - $\mathbb{E}_{X \sim p}[\hat{\mu}_n] = \int f(x)p(x)dx = \mu$ (unbiased) • $Var(\hat{\mu}_n) = \frac{\mu(1-\mu)}{(\sinh n)}$ (shrinking in *n*) n

Probabilistic Accelerated evaluation: Framework

- Four elements: $\langle f, p, \mathcal{S}, q \rangle$
 - 0

Ding Zhao | CMU

Design of q is related to key characteristics of the problem $\langle f, p, \mathcal{S} \rangle$

 \circ If \mathcal{S} has a single dominating point, an analytical efficient solution can be

Importance Sampling (IS)

- IS procedure for estimating $\mu = \mathbb{E}_{X \sim p}[1(X \in \mathcal{S})]$:
 - generate *n* i.i.d samples $X^{(1)}, X^{(2)}, \dots, X^{(n)}$, from another distribution $X^{(i)} \sim \tilde{p}$
 - observe $Y^{(1)}, Y^{(2)}, \dots, Y^{(n)}$, where $Y^{(i)} = f(X^{(i)})$
- Note that $\mathbb{E}_{X \sim \tilde{p}}[\hat{\mu}_n] = \int f(x) \left(\frac{p(x)}{\tilde{p}(x)}\right) \tilde{p}(x) dx = \int f(x) p(x) dx = \mu$ (unbiased)

Ding Zhao | CMU

S

4

 X_1

Deep IS: Toy Example

• **Example:** Suppose we want to estimate the probability $\mu_Y = \mathbb{E}[f(X)] = P(X \in \mathcal{S})$ \mathbf{x}_2 for some set $\mathcal{S} \subset \mathbb{R}^2$ Suppose that $X \sim p$ where p

is a Gaussian centered at [0, 0]

Dominant points

• Dominating point x^* of the set \mathcal{S} with respect to density p is defined as $x^* = \arg \max p(x)$

Multiple dominating points issue with iterative methods (CE)

- One of the main challenges with the traditional iterative methods (Cross Entropy) is selecting and optimizing over the parametric class $Q = \{q_{\theta}, \forall \theta \in \Theta\}$
- An overly simple \hat{Q} may result in a biased estimator, e.g. in multiple dominating point \mathcal{S} case

Statistics (AISTATS). PMLR, 2021.

Arief, Mansur, Zhiyuan Huang, Guru Koushik Senthil Kumar, Yuanlu Bai, Shengyi He, Wenhao Ding, Henry Lam, and Ding Zhao. "Deep Probabilistic Accelerated Evaluation: A Certifiable Rare-Event Simulation Methodology for Black-Box Autonomy." To appear in the Proceedings of the 24th International Conference on Artificial Intelligence and

GMM-PrAE: Using GMM for the multiple dominating points case

• If $\mathcal{S} = \bigcup_{j=1}^{J} \mathcal{S}_{j}$ in which all \mathcal{S}_{j} 's are convex, then a Gaussian Mixture (GMM) with component means shifted to cover all S_i 's is efficient

What if there exist a lot of (infinite) dominating points?

- What about other cases? S may have no or infinite dominating points
- Previous approach would suggest infinite-component GMM

Deep-IS: Deep learning based PrAE

- Designing q via deep learning classifier for monotonic rare-event set
 - Train a conservative classifier with Ο piecewise linear decision boundary (ReLU)
 - Sufficiently prune or simplify the model
 - Find the dominating point w.r.t. classifier decision boundary and p
 - Construct GMM-based q with these dominating points

Ding Zhao | CMU

Arief, Mansur, Zhiyuan Huang, Guru Koushik Senthil Kumar, Yuanlu Bai, Shengyi He, Wenhao Ding, Henry Lam, and Ding Zhao. "Deep Probabilistic Accelerated Evaluation: A Certifiable Rare-Event Simulation Methodology for Black-Box Autonomy." To appear in the Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2021.

Summary

- Adversarial scenario generation
 - GAN
 - GAN+prior
 - IS-based method (Accelerated Evaluation)

Worth reading

- of accelerating automated vehicle testing. https://mcity.umich.edu/wp-content/uploads/2017/05/Mcity-White-Paper Accelerated-AV-Testing.pdf
- safety-report/2020-09-waymo-safety-report.pdf
- 2005.02979

Ding Zhao | CMU

• Zhao, Ding, and Huei Peng. "From the lab to the street: Solving the challenge

Waymo Safety Report, 2020. <u>https://storage.googleapis.com/sdc-prod/v1/</u>

 Corso, A., Moss, R.J., Koren, M., Lee, R. and Kochenderfer, M.J., 2020. A survey of algorithms for black-box safety validation. <u>https://arxiv.org/abs/</u>

