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* [raditional ways to identify scenarios

 Adversarial Generative Network

* Importance Sampling methods
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Adversarial Generative models?
Check This ..

https://thispersondoesnotexist.com



Generative models

ing Zhao | CMU
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generator: generating fake high-quality images from random latent
samples (e.g. Gaussian noise)

discriminator: classifying whether images are real (from datasets) or
fake (generated by the generator)
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Random
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Generator network
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Fake image sample
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Generative Adversarial Network

* [raining procedure

* The parameters of both networks are updated by backpropagating the
gradient of a mutual loss function

» Key step: ensuring both networks are well-balanced (none dominating
the other during training)
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Dataset of real images Real image sample Discriminator network

Real

* Loss

Random

Generator network
latent Z

Gradients are used to update discriminator
) and generator networks parameters

Fake image sample
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Generative Adversarial Network

* [raining mechanism is a minimax game:

» Generator (G): generating good images using latent samples z ~ p,

» Discriminator (D): discriminating real images x ~ p, from fake G(z)

Real image sample x Real

Discriminator network D or Loss

fake?
Fake image sample G(2)

Dataset of real images

Random

latent 7 Generator network G

Min-Max Game
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Generative Adversarial Network

* [raining mechanism is a minimax game:

» Discriminator (D): discriminating real images x ~ p, from fake G(2)

Real image sample x

Real
Dataset of real images Discriminator network D D(x) or

fake?

Training objective: max k, [log D(x)]
D X
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Generative Adversarial Network

* [raining mechanism is a minimax game:

» Generator (G): generating good images using latent samples z ~ p,

Real
Discriminator network D D(G(z)) or

fake?

Random

latent 7 Generator network G

Fake image sample G(2)

Training objective:

m(e}lx [I(G(z) = real)] X mén = p. [log(l — D(G(Z)))]

~p,
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Generative Adversarial Network

* [raining mechanism is a minimax game:

» Generator (G): generating good images using latent samples z ~ p,
» Discriminator (D): discriminating real images x ~ p, from fake G(z)

 Training goal: finding the best G and D simultaneously:

mén max [-prx[log D(x)] +E,., |log(l - D(G(Z)))]]

Ding Zhao | CMU 10



Generative Adversarial Network

* Improving the convergence of the minimax optimization

 Choosing an appropriate mutual loss function (similar idea, but different

formulation)

Ding Zhao | CMU

GAN Type
GAN
WGAN
Improved WGAN
LSGAN
RWGAN
McGAN
GMMN
MMD GAN
Cramer GAN
Fisher GAN
EBGAN
BEGAN
MAGAN

Key Take-Away
The original (JSD divergence)
EM distance objective
No weight clipping on WGAN
L2 loss objective
Relaxed WGAN framework
Mean/covariance minimization objective
Maximum mean discrepancy objective
Adversarial kernel to GMMN
Cramer distance
Chi-square objective
Autoencoder instead of discriminator
WGAN and EBGAN merged objectives

Dynamic margin on hinge loss from EBGAN

Source: https://towardsdatascience.com/
gan-objective-functions-gans-and-their-

variations-ad77340bce3c
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Approximate likelihood

Exact likelihood

Likelihood free

Ding Zhao | CMU

VAE: maximize ELBO.

Flow-based
generative models:
minimize the negative

log-likelihood

GAN: minimax the
classification error loss.

Deep generative models

D

Encoder

q¢(z[x)

/

Flow

/

Decoder
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f(x)

Discriminator

D(x)

/

Inverse

f(2)

/

Generator

G(z)

T~

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
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ands-on time: GAN Lab
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Ding Zhao | CMU https://poloclub.github.io/ganlab/

Gradients " 2 update(s) per epoch

9 LAYERED DISTRIBUTIONS

Discriminator
loss

Generator

loss

Each dot is a sample:

* Real samples

 Fake samples (by generator)

Background colors of grid cells represent discriminator's predic’

B Samples in this cell might be real.
Difficult to determine whether samples are real or fake.

B Samples in this cell might be from the generator.
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Adversarial Scenario Generation

Update
( l 4 A

Scenario
Generator

N Y,
Feedback / \Sample
/f / A ’""\' --------- \\

Autonomous | Safety-critical

Vehicle Scenarios
\_ N .

\_ Simulator Y

,———‘___\
B

» Put an autonomous vehicle into the loop to give feedback to the generator.



Adversarial Scenario Generation

Distribution of learned safety-critical scenarios (initial position and orientation)

High probability Low probability /\ Mean position Route of AV

Position Distribution

Orientation Distribution

« Adaptive to different routes of AV

W. Ding, M. Xu, D. Zhao. Learning to collide: An adaptive safety-critical scenarios generating method, IROS 2020
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Adversarial Scenario Generation

What's the remaining problem ?

ot

.‘._

«  Safety-critical scenarios are
diverse and follow a multi-modal
distribution.

 (Generated Safety-critical scenarios
should be realistic.

Different results with different initialization

W. Ding, M. Xu, D. Zhao. Learning to collide: An adaptive safety-critical scenarios generating method, IROS 2020
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Adversarial Scenario Generation

-

\_

Prior Model

(from real dataset)

~

Update
p C

J

« Use a prior model to represent the probability of a scenario happen in the real-world.

 Use a normalizing flow model to estimate the multi-modal distribution.

W. Ding, B. Chen, B. Li, D. Zhao, Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation, Robotics and Automation Letters 2021

.

Scenario
Generator

\

J
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Multi-model
Sampler

\

/
— ——
Autonomous | : Safety-critical !
Vehicle . Scenarios
K / ‘e /
\_ Simulator Y
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Adversarial Scenario Generation

W. Ding, B. Chen, B. Li, D. Zhao, Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation, Robotics and Automation Letters 2021



Adversarial Scenario Generation

Summary

» Adaptivity, interact with downstream vehicle
* Considering the real-world data
» Diversity, multi-modal distribution

* Poor generalization, only works for target autonomous vehicle
« Sparse and inefficient, robust vehicle is hard to attack
 Traffic rule violation

19



11 billion miles

To prove an AV is safer than human drivers

Rare event analysis

Ding Zhao | CMU Nidhi Kalra, Susan M. Paddock, “How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? RAND report 2016 20



Accelerated Evaluation

Safet : :
Energy y Security/Privacy
[Chang, ITSC, 2018] [Jia, ITSC, 2017]
| Environment Business/Insurance
“Development of provable autonomous vehicle [Arief, INFORMS, 2018]
evaluation approaches with efficient data :
, , , , o Versatile
collection, unsupervised analysis, and high- Efficient cornel
dimensional stochastic models of on-road driving Monotonicity [Huang, ACC, 2018]

[Huang, ITSC, 2017]

environment” (Uber, PI)

: Accurate
EXperImI?r%tir?; Piecewise dist.
“Development of efficient multi-model Zhao, ITSC, 2017] [Zhao, TITS 20171
annotation and checking tools based on :
| , Ny Adaptive Dynamic
synthesized learning methods” (Bosch, PI) Stochastic

Cross-Entropy
[Zhao, TITS,2017]

Optimization,
[Zhao, TITS, 2017]

(14 (o . - 7)
Development of rimary other vehicl _— :
evelopme tofa“p a.yot e.test ehicle Heuristic - Rigorous
for the testing and evaluation of high-level Frequentist ;: | 2 Importance
[Zhao, IAVSD, 2015] = & +.3,7 * - Sampling

automated vehicles” (Toyota, Co-PI) Zhao, DSCC, 2015]
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Key idea

» (Give more test budgets to scenarios that may most likely fail AVs and also
most likely happen in the real world

e Likelihood of scenario in the real world <- models of real world data

* Likelihood of failure <- AV-in-the-loop tests (physical/simulation)

Ding Zhao | CMU
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Naturalistic environment vs accelerated environment

_,/" " '(; :'. ¢ ’
> ‘_,’ '
1\ I i |
e
|

TOYOTA

RESEARCH INSTITUTE

Naturalistic Environment Accelerated Environment

Dmg Zhao ‘ CMU Zhao, "Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques”, IEEE ITS, 2017. 24






Accelerated Evaluation

“Skew back”

Test results

|dentify

Benefits in the
real world

“Skew” the
naturalistic
statistics

Build
stochastic
model

CONCEPT

|
|
|

Critical cases &

probabilities

Driving Database

Implementation

Modeling the env.

Understand failures

s Robotics/AR
m Generative models :IIIIIIIIIIIIIIII' ‘.IIIIIIIIIIIIIIIIIIIIIII-.
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— / i IEEE ITS 2017
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IEEEITS 2017 s 1%22 Trléaztc')ozl}
Heuristic Rigorous
Skew statistics 1 / 1 Importance
' IAVSD 2015 -~ ... ?)%?ggrbgls
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Zhao, "Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques”, IEEE ITS, 2017.
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Probabilistic Adversarial Sampling

e Suppose we want to estimate the probability of dangerous events &
 Input: X = random initial distance and relative velocity

» QOutput: ¥ = simulation outcome, either crash or not crash

I, crash
0, not crash

r ==

» Crash ordangerousset: & = {X : f(X) =1}
e Goal: Estimatingu=P(Y=1)=PX € ) =

Ding Zhao | CMU
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Monte Carlo (MC) sampling

5
» Monte Carlo procedure for estimating 4 = Ey_ [ 1(X € &)]: 4~’,..: <
* generate n i.i.d samples XD x@ ... XM \where X ~ p 3_;511:05‘;9.@.9'??‘.”5“‘?. .
. observe YW, Y4 ... Y where YW = fiXW) 2
- s Ly 0
+ compute sample average (MC estimator) /i, =—) . Y
* Note that
4
« Ex.[f,] = | f(x)p(x)dx = p (unbiased)
1 —
. Var(/i,) = aa S (shrinking in n)
n

Ding Zhao | CMU 28



Probabilistic Accelerated evaluation: Framework

e Fourelements: <f,p,&,qg >
o Design of g is related to key characteristics of the problem < f,p,& >

o If & has a single dominating point, an analytical efficient solution can be

found s 5

Ke S
4 4

x
3 3
) e Original u V)

2 2
1 - 1

Shifted, u”
0 0

0 1 2 3 4 5 0 1 2 3 4 5
X1 X1
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* |S procedure for estimating 4 = I

Importance Sampling (1S)

XNp[l(X e d)l:

e generate n i.i.d samples XD x@ .. X" from another

distribution
X ~ P

e Observe Y(l), Y(z), e, Y("), where Y(i) =f(X(i))

. compute likelihood ratio W), W) ... W \where W =

p(X?)

pX®)

« compute weighted average (IS estimator) ji, = %Zr.l:l yOww

» Notethat £y -[g, ] = [f(x
(unbiased) xplh] = | )(

Ding Zhao | CMU
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Deep IS: Toy Example

e Example: Suppose we want to 5-
estimate the probability 4
_E _ 3-
py = E[f(X)] = P(X € &) N N
x 5. )
for some set & C R?
1 4
Suppose that X ~ p where p
IS @ Gaussian centered at [0, O] 0 2 4
X1
0.005]
S —— MC estimator 1-sigma ClI 80 —— MC estimator —— IS estimator
E 0.004- —— IS estimator IS 1-sigma CI °
S S 60-
80.003 =
© 0.002 L40
£ 0.001 < 20
) ~— -
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

: _ , Num. of les,
Dlng Zhao ‘ CMU Num. of samples, n um. of samples, n 31



Dominant points

e Dominating point x™* of the set & with respect

to density p is defined as x* = arg max p(x)
XES

Ding Zhao | CMU
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Multiple dominating points issue with iterative methods (CE)

® One of the main challenges with the traditional iterative methods (Cross Entropy)

is selecting and optimizing over the parametric class @ = {g,, VO € O}

e An overly simple @ may result in a biased estimator, e.g. in multiple dominating

point & case

5 5
X X
4 4 -
< | * ‘ < s g T~ ¥
X , X N y “1.
; f x My
x> | | S x  Hce
0 0+— ‘
0 1 2 3 4 5 0 1 2 3 4 5
X1 X1

_ Arief, Mansur, Zhiyuan Huang, Guru Koushik Senthil Kumar, Yuanlu Bai, Shengyi He, Wenhao Ding, Henry Lam, and Ding Zhao. "Deep Probabilistic Accelerated Evaluation:
D| ng ZhaO | CM U A Cgrtifiable Rare-Event Simulation Methodology for Black-Box Autonomy." To appear in the Proceedings of the 24th International Conference on Artificial Intelligence and
Statistics (AISTATS). PMLR, 2021.
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GMM-PrAE: Using GMM for the multiple dominating points case

J
(GMM) with component means shifted to cover all cS’j’s s efficient

o IfS = U},=1 &';in which all &’/s are convex, then a Gaussian Mixture

Num. of samples, n

Ding Zhao | CMU

Num. of samples, n

Num. of samples, n

Num. of samples, n

5 5 5 E 5 ,
= : = ) / \ \ =
31 — 3 : | 3 ‘ : | | " | 3 - : 5 ° Mo
X 5] AN X 5] e | 5 5 | \_ ) x 5 \. Cox My
01 e 01 e cE 0 § o) 0 S P =
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
X1 X1 X1 X1
0.008
v 0.005 —— MC estimator O 50 —— MC estimator
% 0.004. o IS estimator % 0.007 o IS estimator
20 . . IS CE estimator £ 0 006 .40 IS CE estimator
€0.003 = £ >
) N I — v Q PN — L 30
- . v ©.0.005 ~
o > 40 g
©0.002 = o 2
= [ 2 0.004 ® 20
£ x 20 c o
+0.001 ~__ o “ 10
i —— » 0.003 10
Ll
5000 10000 5000 10000 5000 10000 5000 10000



What if there exist a lot of (infinite) dominating points?

e \What about other cases?d may
have no or infinite dominating

points

® Previous approach would
suggest infinite-component
GMM

Ding Zhao | CMU
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Deep-IS: Deep learning based PrAE

e Designing g via deep learning classifier for monotonic

rare-event set (& \
o Train a conservative classifier with
piecewise linear decision boundary (ReLU) o :
2 15
o Sufficiently prune or simplify the model
1 1 \
o Find the dominating point w.r.t. classifier ;
decision boundary and p St

o Construct GMM-based g with these dominating points

Arief, Mansur, Zhiyuan Huang, Guru Koushik Senthil Kumar, Yuanlu Bai, Shengyi He, Wenhao Ding, Henry Lam, and Ding Zhao. "Deep Probabilistic Accelerated Evaluation:

D| ng ZhaO ‘ C M U A Cgrtifiable Rare-Event Simulation Methodology for Black-Box Autonomy." To appear in the Proceedings of the 24th International Conference on Artificial Intelligence and
Statistics (AISTATS). PMLR, 2021.
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Summary

* Adversarial scenario generation
 GAN
 GAN+prior

e |S-based method (Accelerated Evaluation)

Ding Zhao | CMU
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Worth reading

* /Zhao, Ding, and Huei Peng. "From the lab to the street: Solving the challenge
of accelerating automated vehicle testing.

https://mcity.umich.edu/wp-content/uploads/2017/05/Mcity-White-
Paper Accelerated-AV-Testing.pdf

 Waymo Safety Report, 2020. https://storage.gooqgleapis.com/sdc-prod/vi/
safety-report/2020-09-waymo-safety-report.pdf

e Corso, A., Moss, R.J., Koren, M., Lee, R. and Kochenderfer, M.d., 2020. A

survey of algorithms for black-box safety validation. https://arxiv.org/abs/
2005.02979

Ding Zhao | CMU 38
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